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We present a numerical method for the evaluation of dynamical response functions at finite temperatures in
one-dimensional strongly correlated systems. The approach is based on the density-matrix renormalization
group method, combined with the finite-temperature Lanczos diagonalization. The feasibility of the method is
tested on the example of dynamical spin correlations in the anisotropic Heisenberg chain, in particular, it yields
nontrivial results for the critical behavior in the isotropic case.
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I. INTRODUCTION

Strongly correlated systems present one of the major the-
oretical challenges in last decades and are stimulating the
intensive search for adequate numerical methods to evaluate
their properties. Within the low-dimensional systems, in par-
ticular one-dimensional �1D� systems the breakthrough has
been achieved with the introduction of the density-matrix
renormalization group �DMRG� method1 allowing accurate
calculation of the ground-state wave function and its static
properties on large systems far beyond those available with
the exact-diagonalization methods. Among various DMRG
extensions2 we concentrate here on the goal to study the
dynamical response of such systems at finite temperatures
T�0. It should be observed that in spite of the satisfactory
description and an understanding of static properties of ge-
neric 1D systems at T�0 the corresponding dynamics, in
particular, the low-frequency one as manifested in the trans-
port quantities, NMR relaxation, is far less understood and
approachable via numerical methods.

For dynamical response within the ground state the target-
ing within the DMRG has been extended to contain also
excited states.3,4 Transfer-matrix DMRG �Refs. 5–7� is very
efficient to evaluate thermodynamic properties of models
with short-range interactions as well as some dynamical cor-
relations of very limited range. Time dependent DMRG
�Refs. 8 and 9� developed recently enables studies of short-
time evolution of general many-body systems hence also of
T�0 behavior but is rather limited in reaching the low-�
response. Recently, a DMRG method extended with the
polynomial expansion has been proposed to treat low-T
dynamics.10 On the other hand, methods emerging from the
exact-diagonalization approach as the finite-temperature
Lanczos method �FTLM� �Ref. 11� and the low-T version12

have high-� resolution and provide the information on the
nontrivial dynamics of correlated models but are still re-
stricted to small systems reachable with exact diagonaliza-
tion.

The paper is organized as follows. In Sec. II we first
present our method, with which we calculate some static and
dynamical properties of the model described in Sec. III. In
Sec. III we also show our results, first the test of our method
on the XY model and then our main results for the isotropic
Heisenberg model. In Sec. IV we present our conclusions.

II. METHOD

In this paper we propose a method for the calculation of
the T�0 dynamics which is a combination of the FTLM and
the DMRG, namely, the finite-temperature dynamical
DMRG �FTD-DMRG� method. It is constructed to calculate
dynamical response functions in 1D systems at T�0 with
the emphasis on the low-� regime. As a test we consider
highly nontrivial spin correlations within the anisotropic
Heisenberg model on a chain.

In the standard T=0 DMRG the ground state is used to
construct the basis. In our case we use the full T�0 density
matrix, which can in general be expressed with eigenstates
�n� and corresponding eigenvalues En

�̂ =
1

Z
e−�Ĥ =

1

Z
�
n=1

Nst

�n�e−�En�n� , �1�

where �=1 /T and Z is the �grand� canonical sum. We pro-
ceed by extending the density matrix, Eq. �1�, with the sam-
pling over the random vectors �r�=�n�rn�n� where �rn denote
random amplitudes

�̂ �
Nst

ZR
�
r=1

R

e−�Ĥ/2�r��r�e−�Ĥ/2. �2�

It is easy to show that Eq. �2� reduces to Eq. �1� expressed in
diagonal basis �n��n� since offdiagonal terms vanish assum-
ing normalized and random �r�.11 In Eq. �2� we evaluate the

operator e−�Ĥ/2 on �r� by starting the Lanczos procedure from

�r�. After diagonalization of the Lanczos tridiagonal Ĥ, we
obtain the first series of Lanczos eigenvectors ��i

r� with cor-
responding eigenenergies �i

r

��̃r� = �
i=1

M

e−��i
r/2��i

r���i
r�r� ,

�̂ �
Nst

ZR
�
r=1

R

��̃r���̃r� . �3�

It is evident that for M approaching Nst Eq. �3� reproduces
fully Eq. �1� while for M �Nst as used in practice represents
an efficient way of evaluation of density matrix. The sum Z
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may be evaluated in the same manner as within the FTLM
�Ref. 11�

Z �
Nst

R
�
r=1

R

�
i=1

M

e−��i
r
���i

r�r��2. �4�

In the original T=0 DMRG procedure one targets the ground

state.1,2 Instead, at T�0 we target states ��̃r� and construct
the density matrix according to Eq. �3�.

Since our aim is to calculate dynamical response func-
tions, expressed as autocorrelation functions, we also require
a good representation of the operator density matrix

�̂A =
1

Z
�
n=1

Nst

�Ân�e−�En�Ân� . �5�

It replaces the operator on the ground state in original T=0
DMRG �Refs. 2 and 3� and is evaluated by extending Eq. �3�

��̃r
A� = �

i=1

M

e−��i
r/2Â��i

r���i
r�r� = Â��̃r� ,

�̂A �
Nst

R
�
r=1

R

��̃r
A���̃r

A� . �6�

In the proposed targeting we sum up above contributions
with weighting factors

�̂tot = p1
�̂

Tr �̂
+ p2

�̂A

Tr �̂A

�7�

with the restriction p1+ p2=1. From �̂tot we prepare the re-
duced density matrix by integrating out the environment,
which is then used to construct the basis within the infinite
and finite algorithms of the DMRG.2 Our way of targeting is
in fact very similar to the one in Ref. 10 with an additional
random sampling suppressing the nondiagonal terms of �̂. In
such a way we prepare the basis for any T�0 whereby limi-
tations are emerging from the truncation of the basis being
more under control for low T. It should also be mentioned
that for dynamical response at particular � there is an im-
provement to target also excited states corresponding to so-
called correction vectors.4,10 Still, the latter does not affect
quality of the most interesting and challenging regime �
�0 as well as it increases the computational demand hence
we do not employ it here.

Physical quantities are calculated in the measurement part
of the FTD-DMRG procedure in the same manner as within
the FTLM.11 A dynamical autocorrelation function

A��� =
1

Z
�

n

e−�En�n�Â† 1

� − �Ĥ − En� + i	
Â�n� �8�

is evaluated with the use of two Lanczos series of eigenstates
and eigenenergies

A��� �
Nst

ZR
�
r=1

R

�
i,j=1

M

e−��i
r 1

� − �� j
Ar − �i

r� + i	


�r��i
r���i

r�Â†�� j
Ar��� j

Ar�Â�r� . �9�

The second Lanczos series of eigenstates �� j
Ar� and eigenen-

ergies � j
Ar is obtained from second Lanczos procedure start-

ing from the initial vector Â�r�.

III. MODEL AND RESULTS

As a nontrivial test of the method we analyze the dynam-
ics of the 1D anisotropic Heisenberg model

Ĥ = J�
i=1

L 	1

2
�Si

+Si+1
− + Si

−Si+1
+ � + �Si

zSi+1
z 
 , �10�

where Si
� ,Si

z are local spin S=1 /2 operators, L is the chain
length, J is the exchange coupling �in the following we use
J=1�, and � is the anisotropy parameter. In our calculations
we focus on systems in the absence of the magnetic field
hence on the subspace Stot

z =0. As the quantity of interest we
choose the dynamical spin structure factor S�q ,�� and the
corresponding susceptibility �q ,��

S�q,�� =
1

2�
�

−�

+�

dtei�t�Sz�q,t�Sz�q,0�� ,

��q,�� = ��1 − e−���S�q,�� . �11�

As usual within the DMRG technique more accurate results
are obtained with open-boundary conditions2 hence one de-
fines Sz�q�=�2 / �L+1��sin�qi�Si

z whereby q=�j / �L+1� with
j=1, . . . ,L. In our calculations we concentrate on most chal-
lenging q=Q=�, i.e., j=L.

The relaxation function ��q ,��=��q ,�� /� should be an
even function of �. This represents another nontrivial test for
the FTD-DMRG method. In addition to considering com-
plete spectra ��q ,�� better defined criteria are frequency
moments

M�n��q� =
1

�
� ��q,���nd� . �12�

Due to symmetry only even Mn�q� are finite while the static
susceptibility corresponds to 0�q�=M0�q�. In the following
we employ the FTD-DMRG method to evaluate ��Q ,�� for
�=0,1 and various T. In the actual implementation we use
the infinite and finite-size DMRG basis preparation and the
calculation of S�Q ,�� via Eq. �9� A=Sz�Q�� performed on
the system divided into two subblocks of size �L−2� /2 and
two coupling sites in between.2 In the preparatory sweeping
typically 1 or 2 sweeps are sufficient for the convergence of
the basis. Important parameters for the final quality of results
are the �subblock� DMRG truncation number m and the num-
ber of Lanczos steps M. We are typically restricted to m
�1000 and M �100. We have two kinds of sampling. One
in the determination of the density matrix Eq. �2�, R=R1 for
the basis preparation, and the other in the evaluation of the
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final Eq. �9�, R=R2. While only modest R1�50 is adequate,
R2�1 is needed, in particular, at low T �Ref. 11� to get
accurate matrix elements. At higher T R2 can be reduced
effectively to R2�1.11 Further on we mainly consider T
�0.5 with R2�100. When evaluating the feasibility of vari-
ous methods we should keep in mind that the full exact-
diagonalization evaluation of S�q ,�� at T�0 for the model
at hand can be performed up to L=14–16 with the FTLM
technique up to L=24 while in the following we present the
FTD-DMRG results up to L=40.

A. XY model

The �=0 case maps onto noninteracting spinless fermions
via the Jordan-Wigner transformation and S�Q ,�� can be
expressed for any T�0 in a Lindhard form. For finite L the
only caveat is that the FTD-DMRG is performed within a
canonical systems with fixed Stot

z =0, i.e., with fixed number
of fermions Ne=L /2 while the usual �easier� evaluation is
within the grandcanonical ensemble. In Fig. 1 we present the
FTD-DMRG result for �unsymmetrized� relaxation function
��Q ,�� at low T=0.25. Results are for L=36 where the
basis is heavily reduced, i.e., only 5
10−4 of all states are
retained within the final evaluation. For comparison we show
the exact �grandcanonical� fermionic result for the same sys-
tem with open boundary condition and for all presented spec-
tra we use the damping 	=0.05. Oscillations are a clear sign
of finite-size system and slowly disappear with increasing T
and L. The finite-size effect can be avoided by smoothing
with a Gaussian filter with the width adapted to the fre-
quency �1 /L. From Fig. 1 it is evident that at low ����1 the
agreement between the FTD-DMRG and the exact result is
very satisfactory. At high ��2 the FTD-DMRG does not
fully reproduce the sharp spectral edge which could be im-
proved by the introduction of the correction vector targeting
for ��0 within the method.2,4,10

Figure 2 shows the corresponding results for the fre-
quency moments Mn�Q� displayed vs 1 /L obtained with the
full basis for L�22 and with the FTD-DMRG method for
L�40. For comparison also corresponding exact results are
shown within the canonical calculation at Ne=L /2. It is evi-
dent that T=0.25 is already high enough so that moments are
essentially size independent. Also up to L=40 FTD-DMRG

results are well stable, at least for lowest M0 ,M2, while for
M4 some deviations originate from high-� regime and are
also visible in Fig. 1. At the same time, M1 ,M3�0 is well
reproduced as required by the symmetry of ��Q ,��.

B. Isotropic Heisenberg model

The isotropic �=1 case �at Stot
z =0� representing margin-

ally gapless system is by far more challenging. For T�0
there are no exact results for dynamical quantities. The
bosonization approach provides a form for S�q ,�� within the
low �−T regime.13,14 Relative to the �=0 case the diver-
gence for �=1 is stronger and nontrivial. The isotropic
model has been an obvious target for numerical methods.
Static quantities, as the structure factor S�q� and 0�q� have
been evaluated using the quantum Monte Carlo �QMC�
method and the high-T expansion,15,16 recently also with the
time-dependent DMRG17 but only for q�Q so far. An obvi-
ous deficiency is in results for dynamic quantities at ��0
since the QMC approach �due to the maximum entropy pro-
cedure� seems to have considerable uncertainty in this
regime.16 On the other hand, the latter regime is frequently
just the most interesting, e.g., in connection with the NMR
relaxation rate 1 /T1��qAqS�q ,�→0�, with transport quan-
tities, etc.

In Fig. 3 we present results for ��Q ,�� obtained for L
=40 sites and different T. Since spectra are peaked at �=0
�in contrast to Fig. 1� finite-size oscillations are more pro-
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FIG. 1. �Color online� Relaxation function ��Q ,�� within the
XY model for T=0.25 and a system of L=36 sites. For comparison
the exact grandcanonical result for spinless fermions is shown and
the corresponding smoothed curve relevant for L→�.
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FIG. 2. �Color online� Lowest frequency moments Mn�Q� vs
1 /L for T=0.25. For comparison exact moments are shown up to
L=22.
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FIG. 3. �Color online� Symmetrized ��Q ,�� for the isotropic
Heisenberg model shown for L=40 and T=0.15,0.25,0.35. Pre-
sented are also finite-size smoothed spectra �dotted line�.

FINITE-TEMPERATURE DYNAMICS WITH THE DENSITY-… PHYSICAL REVIEW B 80, 205117 �2009�

205117-3



nounced. Hence, also smoothed curves Gaussian width
�=4 cos�L /2�L+1�� /�2� are presented as relevant for
L→�. We note that such spectra are nearly L independent
�L=16–40� for ��0.5 whereas for ��0 still scale as
a+b /L.

On the other hand, static 0�Q� can be extracted directly
without invoking any smoothing and FTD-DMRG results
combined with the FTLM results for L=12–20 are shown in
Fig. 4 scaled vs 1 /L. Deviations from the linear scaling
mostly emerge from the random sampling in the basis prepa-
ration and the dynamical quantity evaluation and for the lat-
ter are indicated with error bars. Final scaled FTD-DMRG
results for 0�Q� vs T are shown in Fig. 5 together with the
result of the QMC analysis15 of the analytical expression

0�Q� =
a

T
ln�b/T��1/2. �13�

Our FTD-DMRG result is quite consistent with QMC results
at higher T�0.3. Still it is indicative that we get higher
values �beyond error bars� for T�0.3.

Finally, we present in the same Fig. 5 also scaled values
of S�Q ,�=0� vs T. Bosonization theory gives14

S�Q,0� =
A

T
ln��/T��1/2 �14�

also fitted to our results with �=24.27 taken from Ref. 18
and adjusted A�0.205. The agreement with the analytical fit
is very good although there seems to be substantial differ-
ence in the prefactor A.14 On the other hand, it should be
reminded that for this quantity there are no reliable larger-
system alternative results since the QMC analysis15,16 ap-
pears to have some difficulties in the regime ��0.

IV. CONCLUSIONS

In conclusion, we have introduced the FTD-DMRG
method, which is the extension of the density-matrix-based
optimization of target states and the FTLM method for the
evaluation of dynamical quantities at T�0. It is so far well
founded and tested for relatively low T and not too large
systems, e.g., L�40 while the feasibility or possible break-
down at larger T should still be understood. Presented results

are obtained for systems with Z̃�200 normalized so that

Z̃�T=0�=1� although the method is not, in principle, limited
to low T since it is not essential that all relevant many-body
states are well represented, in analogy to the FTLM.11 The
emphasis so far is on the most challenging ��0 dynamical
response while higher � could be improved by extending the
density matrix by optimizing the correction vector at particu-
lar �.4,10 As the test we use the �=0 case which is nontrivial
for the FTD-DMRG method while exact results are available
via the spinless-fermion representation. On the other hand,
results for the isotropic �=1 case where we concentrate on
the low �−T regime of dynamical spin correlations S�Q ,��
show that the presented method goes beyond the capabilities
of up-to-date numerical methods, e.g., in the case of
S�Q ,�=0�. Clearly, more effort is needed to examine in
more detail the feasibility of the new method.
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